Titre : |
De la synthèse de nanoparticules de CuO par voie organométallique à l'assemblage de matériaux énergétiques Al/CuO |
Type de document : |
texte imprimé |
Auteurs : |
Palussière, Ségolène, Auteur ; Kahn, Myrtil, Directeur de thèse ; Fajerwerg, Katia, Directeur de thèse |
Année de publication : |
2019 |
Langues : |
Français (fre) |
Tags : |
LIGANDS OXYDES DE CUIVRE NANOPARTICULES MAGNETIQUES NANOPARTICULES ASSEMBLAGE LIGAND MÉTAL OXYDE MÉTALLIQUE SUBSTRAT |
Résumé : |
"Parmi les matériaux énergétiques, les nanothermites sont connues pour leur forte réactivité et leur utilisation dans les applications pyrotechniques. Dans ce cadre, le composite Al/CuO est un matériau prometteur pour l’intégration dans des micro-dispositifs, en raison de sa forte enthalpie de réaction d’oxydo-réduction. L’augmentation de la surface de contact entre les deux réactifs de la thermite permet l’amélioration des propriétés. Le contrôle de la taille, de la morphologie et de la distribution des nanoparticules au sein du nanocomposite revêt donc une importance fondamentale. Dans la majorité des cas, les nanothermites sont obtenues par mélange physique de nanopoudres commerciales non dispersables. Dans cette thèse nous avons proposé d’explorer une voie organométallique pour synthétiser des nanoparticules de CuO permettant ensuite un assemblage avec des nanoparticules commerciales d’Al. A cet effet, des nanoparticules de CuO sont synthétisées par hydrolyse ou oxydation contrôlée d’un précurseur organométallique (amidinate de cuivre) en présence de ligands organiques (octylamine). Les tailles, les formes et les distributions varient en fonction des conditions expérimentales des synthèses. Les états de surface des nanoparticules de CuO ont été ensuite analysés par des méthodes de caractérisations de spectroscopies de RMN et infrarouge. Les informations acquises nous ont permis d’identifier les interactions entre les ligands et la surface des nanoparticules. Dans un deuxième temps, les nanoparticules de CuO sont mélangées avec des nanopoudres d’Al dispersées aux ultrasons dans un solvant organique. Les caractérisations thermiques de ces nanocomposites montrent la présence de réactions exothermiques et endothermiques non caractéristiques des réactions thermites usuelles Al+CuO. Les analyses thermiques et structurelles des nanoparticules de CuO ont révélé que les ligands s’oxydent à basse température (~200 °C) et réduisent le CuO en Cu2O puis en Cu métallique, avant que la réaction thermite ne s’opère. Un protocole expérimental optimisé a été enfin mis en place pour conserver la structure du CuO tout en éliminant les ligands présents dans la couche stabilisante des nanoparticules. Ces nouveaux assemblages génèrent une énergie de réaction équivalente à des nanothermites Al/CuO obtenues par mélange de poudres commerciales. Mais ces nanocomposites possèdent des températures d’initiation plus basses, ce qui est intéressant pour certaines applications. Les connaissances accumulées sur les états de surface et la stabilisation des nanoparticules en solution ouvrent la voie à l’intégration de nanocomposites sur puces microélectroniques par la technologie « jet d’encre »." |
Document : |
Thèse de doctorat |
Etablissement_delivrance : |
Université de Toulouse3 |
Date_soutenance : |
08/11/2019 |
Domaine : |
Chimie Organométallique et de Coordination |
Localisation : |
LCC |
En ligne : |
https://hal.laas.fr/tel-02492683 |
De la synthèse de nanoparticules de CuO par voie organométallique à l'assemblage de matériaux énergétiques Al/CuO [texte imprimé] / Palussière, Ségolène, Auteur ; Kahn, Myrtil, Directeur de thèse ; Fajerwerg, Katia, Directeur de thèse . - 2019. Langues : Français ( fre)
Tags : |
LIGANDS OXYDES DE CUIVRE NANOPARTICULES MAGNETIQUES NANOPARTICULES ASSEMBLAGE LIGAND MÉTAL OXYDE MÉTALLIQUE SUBSTRAT |
Résumé : |
"Parmi les matériaux énergétiques, les nanothermites sont connues pour leur forte réactivité et leur utilisation dans les applications pyrotechniques. Dans ce cadre, le composite Al/CuO est un matériau prometteur pour l’intégration dans des micro-dispositifs, en raison de sa forte enthalpie de réaction d’oxydo-réduction. L’augmentation de la surface de contact entre les deux réactifs de la thermite permet l’amélioration des propriétés. Le contrôle de la taille, de la morphologie et de la distribution des nanoparticules au sein du nanocomposite revêt donc une importance fondamentale. Dans la majorité des cas, les nanothermites sont obtenues par mélange physique de nanopoudres commerciales non dispersables. Dans cette thèse nous avons proposé d’explorer une voie organométallique pour synthétiser des nanoparticules de CuO permettant ensuite un assemblage avec des nanoparticules commerciales d’Al. A cet effet, des nanoparticules de CuO sont synthétisées par hydrolyse ou oxydation contrôlée d’un précurseur organométallique (amidinate de cuivre) en présence de ligands organiques (octylamine). Les tailles, les formes et les distributions varient en fonction des conditions expérimentales des synthèses. Les états de surface des nanoparticules de CuO ont été ensuite analysés par des méthodes de caractérisations de spectroscopies de RMN et infrarouge. Les informations acquises nous ont permis d’identifier les interactions entre les ligands et la surface des nanoparticules. Dans un deuxième temps, les nanoparticules de CuO sont mélangées avec des nanopoudres d’Al dispersées aux ultrasons dans un solvant organique. Les caractérisations thermiques de ces nanocomposites montrent la présence de réactions exothermiques et endothermiques non caractéristiques des réactions thermites usuelles Al+CuO. Les analyses thermiques et structurelles des nanoparticules de CuO ont révélé que les ligands s’oxydent à basse température (~200 °C) et réduisent le CuO en Cu2O puis en Cu métallique, avant que la réaction thermite ne s’opère. Un protocole expérimental optimisé a été enfin mis en place pour conserver la structure du CuO tout en éliminant les ligands présents dans la couche stabilisante des nanoparticules. Ces nouveaux assemblages génèrent une énergie de réaction équivalente à des nanothermites Al/CuO obtenues par mélange de poudres commerciales. Mais ces nanocomposites possèdent des températures d’initiation plus basses, ce qui est intéressant pour certaines applications. Les connaissances accumulées sur les états de surface et la stabilisation des nanoparticules en solution ouvrent la voie à l’intégration de nanocomposites sur puces microélectroniques par la technologie « jet d’encre »." |
Document : |
Thèse de doctorat |
Etablissement_delivrance : |
Université de Toulouse3 |
Date_soutenance : |
08/11/2019 |
Domaine : |
Chimie Organométallique et de Coordination |
Localisation : |
LCC |
En ligne : |
https://hal.laas.fr/tel-02492683 |
|  |