LCC - Centre de Ressources Documentaires
Détail de l'auteur
Auteur Soulantika, Aikaterini |
Documents disponibles écrits par cet auteur (2)



Synthèse de nano-catalyseurs hybrides à base de cobalt pour la catalyse Fischer-Tropsch / Justine Harmel
![]()
Titre : Synthèse de nano-catalyseurs hybrides à base de cobalt pour la catalyse Fischer-Tropsch Type de document : texte imprimé Auteurs : Justine Harmel, Auteur ; Soulantika, Aikaterini, Directeur de thèse ; Philippe Serp, Directeur de thèse Langues : Français (fre) Tags : CATALYSE HETEROGENE NANO-PARTICULES NANO-OBJETS SUPPORT POREUX RÉACTEUR LIT-FIXE RÉACTEUR SLURRY Résumé : "En raison de la raréfaction des ressources de pétrole et des variations des prix avec le contexte géopolitique, la réaction de catalyse de Fischer-Tropsch qui permet la production d’hydrocarbures à partir du mélange syngas des gaz CO et H2 en présence d’un catalyseur à base de fer ou de cobalt, présente aujourd’hui un regain d’intérêt tant de la part des industriels que des académiques. Bien que découverte en 1923 par les allemands Franz Fischer et Hans Tropsch, les mécanismes qui entrent en jeu lors de cette réaction et les paramètres importants des propriétés des catalyseurs demeurent encore incertains. Dans ce contexte, les travaux présentés dans cette thèse visent à étudier l’impact de paramètres tels que la structure cristallographique et la forme de nano-objets de cobalt, phase active du catalyseur pour cette réaction. Ceci passe par la synthèse de catalyseurs modèles à base de nano-objets de cobalt et l’étude de leurs propriétés catalytiques. Dans un premier temps, la préparation d’un catalyseur à base de cobalt présentant une structure cristallographique hcp et une morphologie anisotrope a été réalisée, via une voie de synthèse par décomposition d’un précurseur organométallique de cobalt, conduisant à la formation de nano-objets de cobalt anisotropes. Puis, des tests catalytiques ont été réalisés en réacteur slurry, en collaboration avec un partenaire industriel, l'IFP-EN. Cela a permis la réalisation de tests Fischer-Tropsch en conditions proches des conditions industrielles réelles. Ces études ont permis de mettre en évidence la très grande stabilité de ces catalyseurs en comparaison à des catalyseurs de référence.Enfin, différents catalyseurs à base de cobalt, supportés sur des supports originaux de type macrostructurés permettant une meilleure gestion des échanges thermiques de la réaction, ont été préparés et leurs propriétés catalytiques étudiées sur un réacteur de type lit-fixe, mis en œuvre durant cette thèse. Document : Thèse de Doctorat Etablissement_delivrance : INSA de Toulouse Date_soutenance : 27/10/2016 Ecole_doctorale : Sciences de la Matière Domaine : Chimie/Chimie organique Chimie/Chimie inorganique En ligne : https://tel.archives-ouvertes.fr/tel-01647195 Synthèse de nano-catalyseurs hybrides à base de cobalt pour la catalyse Fischer-Tropsch [texte imprimé] / Justine Harmel, Auteur ; Soulantika, Aikaterini, Directeur de thèse ; Philippe Serp, Directeur de thèse . - [s.d.].
Langues : Français (fre)
Tags : CATALYSE HETEROGENE NANO-PARTICULES NANO-OBJETS SUPPORT POREUX RÉACTEUR LIT-FIXE RÉACTEUR SLURRY Résumé : "En raison de la raréfaction des ressources de pétrole et des variations des prix avec le contexte géopolitique, la réaction de catalyse de Fischer-Tropsch qui permet la production d’hydrocarbures à partir du mélange syngas des gaz CO et H2 en présence d’un catalyseur à base de fer ou de cobalt, présente aujourd’hui un regain d’intérêt tant de la part des industriels que des académiques. Bien que découverte en 1923 par les allemands Franz Fischer et Hans Tropsch, les mécanismes qui entrent en jeu lors de cette réaction et les paramètres importants des propriétés des catalyseurs demeurent encore incertains. Dans ce contexte, les travaux présentés dans cette thèse visent à étudier l’impact de paramètres tels que la structure cristallographique et la forme de nano-objets de cobalt, phase active du catalyseur pour cette réaction. Ceci passe par la synthèse de catalyseurs modèles à base de nano-objets de cobalt et l’étude de leurs propriétés catalytiques. Dans un premier temps, la préparation d’un catalyseur à base de cobalt présentant une structure cristallographique hcp et une morphologie anisotrope a été réalisée, via une voie de synthèse par décomposition d’un précurseur organométallique de cobalt, conduisant à la formation de nano-objets de cobalt anisotropes. Puis, des tests catalytiques ont été réalisés en réacteur slurry, en collaboration avec un partenaire industriel, l'IFP-EN. Cela a permis la réalisation de tests Fischer-Tropsch en conditions proches des conditions industrielles réelles. Ces études ont permis de mettre en évidence la très grande stabilité de ces catalyseurs en comparaison à des catalyseurs de référence.Enfin, différents catalyseurs à base de cobalt, supportés sur des supports originaux de type macrostructurés permettant une meilleure gestion des échanges thermiques de la réaction, ont été préparés et leurs propriétés catalytiques étudiées sur un réacteur de type lit-fixe, mis en œuvre durant cette thèse. Document : Thèse de Doctorat Etablissement_delivrance : INSA de Toulouse Date_soutenance : 27/10/2016 Ecole_doctorale : Sciences de la Matière Domaine : Chimie/Chimie organique Chimie/Chimie inorganique En ligne : https://tel.archives-ouvertes.fr/tel-01647195
Titre : Carbon nanotubes as nanoreactors for magnetic applications Type de document : texte imprimé Auteurs : Xiaojian, Li, Auteur ; Philippe Serp, Directeur de thèse ; Soulantika, Aikaterini, Directeur de thèse Année de publication : 2014 Langues : Anglais (eng) Tags : CARBON NANOTUBES MAGNETIC METAL NANOPARTICLES CONFINEMENT EFFECTS POLYMERIZATION OF ISOPRENE COPT AND FEPT NANOWIRES Résumé : "Carbon nanotubes (CNTs), because of their unique properties and potential use in a variety of applications, are probably the most studied class of nanomaterials. Functionalized CNTs, which can be easily manipulated and modified by covalent or non-covalent functionalization, appear as new tools in biotechnology and biomedicine. Indeed, CNTs have optical, electronic and mechanical properties that can be exploited in biological or biomedical applications. Metallic magnetic nanoparticles (MMNPs) of the 3d series and their alloys exhibit excellent magnetic properties unlike their oxide counterparts, which can be exploited in biomedicine and ultra-high density magnetic recording. When confined in CNTs nano-materials can have different properties and behaviors compared to bulk materials. Various confinement effects resulting from the interaction between the confined materials and the internal cavities of CNTs provide opportunities for regulating or designing new nanocomposites. This thesis is devoted to the study of a new approach for the development of nanocomposite materials MMNPs@CNTs and their properties. MMNPs of controlled size and shape of Co and Fe were synthesized with novel aromatic ligands as stabilizers. These MMNPs were then selectively introduced into the cavity of CNTs due to repulsive/attractive interactions between the functionalized multi-walled CNTs and the MMNPs. We were then interested in the protection of these nanoparticles from oxidation by air. Thus, confined iron nanoparticles have been coated with polyisoprene. To do this, the surface of the Fe nanoparticles has been modified with a polymerization catalyst by ligand exchange; then, polymerization of isoprene was conducted inside the channel of CNTs. The protection from oxidation by the polyisoprene was evaluated by magnetic measurements after exposure to air. Quite surprisingly, this study showed that the iron nanoparticles the more resistant to oxidation were those obtained after ligand exchange and without polymerization. In this case only, the original properties of the nanoparticles are maintained after venting. Finally, magnetic bimetallic nanostructures (particles or rods) combining Pt and cobalt or iron were obtained and confined in CNTs. Their chemical structure orderings were also studied by thermal annealing studies. The work developed in this thesis opens up new perspectives for the production of new MMNPs@NTC nanocomposites resistant to oxidation." Document : Thèse de Doctorat Etablissement_delivrance : Université de Toulouse 3Institut National Polytechnique de Toulouse - INPT Date_soutenance : 24/04/2014 Ecole_doctorale : Sciences de la Matière (Toulouse INPT) Domaine : Institut National Polytechnique de Toulouse - INPT En ligne : http://www.theses.fr/2014INPT0062# Carbon nanotubes as nanoreactors for magnetic applications [texte imprimé] / Xiaojian, Li, Auteur ; Philippe Serp, Directeur de thèse ; Soulantika, Aikaterini, Directeur de thèse . - 2014.
Langues : Anglais (eng)
Tags : CARBON NANOTUBES MAGNETIC METAL NANOPARTICLES CONFINEMENT EFFECTS POLYMERIZATION OF ISOPRENE COPT AND FEPT NANOWIRES Résumé : "Carbon nanotubes (CNTs), because of their unique properties and potential use in a variety of applications, are probably the most studied class of nanomaterials. Functionalized CNTs, which can be easily manipulated and modified by covalent or non-covalent functionalization, appear as new tools in biotechnology and biomedicine. Indeed, CNTs have optical, electronic and mechanical properties that can be exploited in biological or biomedical applications. Metallic magnetic nanoparticles (MMNPs) of the 3d series and their alloys exhibit excellent magnetic properties unlike their oxide counterparts, which can be exploited in biomedicine and ultra-high density magnetic recording. When confined in CNTs nano-materials can have different properties and behaviors compared to bulk materials. Various confinement effects resulting from the interaction between the confined materials and the internal cavities of CNTs provide opportunities for regulating or designing new nanocomposites. This thesis is devoted to the study of a new approach for the development of nanocomposite materials MMNPs@CNTs and their properties. MMNPs of controlled size and shape of Co and Fe were synthesized with novel aromatic ligands as stabilizers. These MMNPs were then selectively introduced into the cavity of CNTs due to repulsive/attractive interactions between the functionalized multi-walled CNTs and the MMNPs. We were then interested in the protection of these nanoparticles from oxidation by air. Thus, confined iron nanoparticles have been coated with polyisoprene. To do this, the surface of the Fe nanoparticles has been modified with a polymerization catalyst by ligand exchange; then, polymerization of isoprene was conducted inside the channel of CNTs. The protection from oxidation by the polyisoprene was evaluated by magnetic measurements after exposure to air. Quite surprisingly, this study showed that the iron nanoparticles the more resistant to oxidation were those obtained after ligand exchange and without polymerization. In this case only, the original properties of the nanoparticles are maintained after venting. Finally, magnetic bimetallic nanostructures (particles or rods) combining Pt and cobalt or iron were obtained and confined in CNTs. Their chemical structure orderings were also studied by thermal annealing studies. The work developed in this thesis opens up new perspectives for the production of new MMNPs@NTC nanocomposites resistant to oxidation." Document : Thèse de Doctorat Etablissement_delivrance : Université de Toulouse 3Institut National Polytechnique de Toulouse - INPT Date_soutenance : 24/04/2014 Ecole_doctorale : Sciences de la Matière (Toulouse INPT) Domaine : Institut National Polytechnique de Toulouse - INPT En ligne : http://www.theses.fr/2014INPT0062#