Titre : |
Synthesis and reactivity of [RhI(CO)2(L)] and [RL][RhI2(CO)2] rhodium complexes where L is a nitrogen containing ligand for the methanol carbonylation reaction |
Type de document : |
texte imprimé |
Auteurs : |
Romain Adcock, Auteur ; Kalck, Philippe, Directeur de thèse ; Philippe Serp, Directeur de thèse |
Année de publication : |
2011 |
Langues : |
Anglais (eng) |
Tags : |
N-LIGAND (AMINE IMIDAZOLE PYRAZOLE) RHODIUM METHANOL CARBONYLATION MEI OXIDATIVE ADDITION REDUCTIVE ELIMINATION REACTION MECHANISM C-H ACTIVATION |
Résumé : |
"This study focuses on the synthesis and reactivity of rhodium complexes bearing N- containing ligands or counter-cations for the [Rh]-catalyzed methanol carbonylation reaction to produce acetic acid under the industrial Celanese Acid Optimization (AO) process conditions. In a first part, full synthesis and characterization of neutral Rh(I) square planar cis- [RhX(CO)2(L)] (X = Cl or I) complexes have been described, for which L is an N-ligand belonging to the amine, imidazole or pyrazole family. For the [RhI(CO)2(L)] complexes, variable-temperature 13C{1H} NMR spectroscopy has put in evidence a fluxional behavior for the different sized L ligands involved. The rate of this fluxional process reveals to be related to both electronic and steric contributions brought by L to the Rh center. These parameters (mainly steric), supported by single-crystal X-ray analyses in the solid state, also influence significantly the kinetics of the methyl iodide oxidative addition reaction followed by rapid CO migratory insertion, the overall being the rate determining step of the [Rh]-catalyzed methanol carbonylation cycle. In absence of CO, this reaction gives rise to the corresponding neutral Rh(III) acetyl complex, which immediately dimerizes to afford [Rh(?- I)I(COMe)(CO)(L)]2 complex, for which several X-ray crystal structures have been obtained and studied. In addition, the surprising C-H activation in the case of a tBu-pyrazole ligand giving rise to a cyclometalated Rh dimer is reported. In a second part, the reactivity of the latter neutral Rh(I) [RhI(CO)2(L)] complexes as potential precursors has been investigated by batch experiments for the methanol carbonylation reaction. Mechanistic understanding via VT-HP-NMR experiments enabled to detect mainly anionic Rh(I) [RL][RhI2(CO)2] (R = H or CH3 according to the working conditions) complexes formed by decoordination followed by quaternization of the L ligand. Despite this result, the pyrazole family ligands showed better stability under the harsh process conditions. Thus, it cannot be ruled out that equilibrium between neutral and anionic species co-exist in the reaction medium at high temperatures and that [RL]I salt dissociation occurs, restoring the L ligand into the Rh coordination sphere. At this stage we focused on the anionic Rh(I) complex and prepared a series of [XNR3][RhI2(CO)2] (X = H or CH3) species, which have been fully characterized. Infrared, NMR, conductivity experiments and DFT model calculations together put in evidence ion interactions according to the nature of the ammonium counter-cation. Protonated cations significantly impact on the kinetics of the methyl iodide oxidative addition presumably due to H-interactions with the Rh square plane. The final part deals with the mechanism of the reductive elimination reaction, the last step of the [Rh]-catalyzed methanol carbonylation cycle, which from complex [RhI3(COCH3)(CO)2]-, regenerates [RhI2(CO)2]-. In contrast to the classically admitted mechanism of reductive elimination of CH3COI followed by subsequent hydrolysis to form AcOH and HI, we demonstrate from experimental DFT calculation that substitution of an iodo ligand by an acetate ion occurs to give rise to the [RhI2(OAc)(COCH3)(CO)2]- species. Thus, reductive elimination regenerates [RhI2(CO)2]- and produces acetic anhydride, which after hydrolysis affords two molecules of acetic acid. Such a mechanism operates under process conditions at low water content with a significant amount of acetate ions." |
Document : |
Thèse de Doctorat |
Etablissement_delivrance : |
Institut National Polytechnique de Toulouse - INPT |
Date_soutenance : |
10/11/2011 |
Ecole_doctorale : |
Sciences de la Matière (Toulouse) |
Domaine : |
Chimie/Chimie de coordination |
En ligne : |
https://theses.hal.science/tel-04547017 |
Synthesis and reactivity of [RhI(CO)2(L)] and [RL][RhI2(CO)2] rhodium complexes where L is a nitrogen containing ligand for the methanol carbonylation reaction [texte imprimé] / Romain Adcock, Auteur ; Kalck, Philippe, Directeur de thèse ; Philippe Serp, Directeur de thèse . - 2011. Langues : Anglais ( eng)
Tags : |
N-LIGAND (AMINE IMIDAZOLE PYRAZOLE) RHODIUM METHANOL CARBONYLATION MEI OXIDATIVE ADDITION REDUCTIVE ELIMINATION REACTION MECHANISM C-H ACTIVATION |
Résumé : |
"This study focuses on the synthesis and reactivity of rhodium complexes bearing N- containing ligands or counter-cations for the [Rh]-catalyzed methanol carbonylation reaction to produce acetic acid under the industrial Celanese Acid Optimization (AO) process conditions. In a first part, full synthesis and characterization of neutral Rh(I) square planar cis- [RhX(CO)2(L)] (X = Cl or I) complexes have been described, for which L is an N-ligand belonging to the amine, imidazole or pyrazole family. For the [RhI(CO)2(L)] complexes, variable-temperature 13C{1H} NMR spectroscopy has put in evidence a fluxional behavior for the different sized L ligands involved. The rate of this fluxional process reveals to be related to both electronic and steric contributions brought by L to the Rh center. These parameters (mainly steric), supported by single-crystal X-ray analyses in the solid state, also influence significantly the kinetics of the methyl iodide oxidative addition reaction followed by rapid CO migratory insertion, the overall being the rate determining step of the [Rh]-catalyzed methanol carbonylation cycle. In absence of CO, this reaction gives rise to the corresponding neutral Rh(III) acetyl complex, which immediately dimerizes to afford [Rh(?- I)I(COMe)(CO)(L)]2 complex, for which several X-ray crystal structures have been obtained and studied. In addition, the surprising C-H activation in the case of a tBu-pyrazole ligand giving rise to a cyclometalated Rh dimer is reported. In a second part, the reactivity of the latter neutral Rh(I) [RhI(CO)2(L)] complexes as potential precursors has been investigated by batch experiments for the methanol carbonylation reaction. Mechanistic understanding via VT-HP-NMR experiments enabled to detect mainly anionic Rh(I) [RL][RhI2(CO)2] (R = H or CH3 according to the working conditions) complexes formed by decoordination followed by quaternization of the L ligand. Despite this result, the pyrazole family ligands showed better stability under the harsh process conditions. Thus, it cannot be ruled out that equilibrium between neutral and anionic species co-exist in the reaction medium at high temperatures and that [RL]I salt dissociation occurs, restoring the L ligand into the Rh coordination sphere. At this stage we focused on the anionic Rh(I) complex and prepared a series of [XNR3][RhI2(CO)2] (X = H or CH3) species, which have been fully characterized. Infrared, NMR, conductivity experiments and DFT model calculations together put in evidence ion interactions according to the nature of the ammonium counter-cation. Protonated cations significantly impact on the kinetics of the methyl iodide oxidative addition presumably due to H-interactions with the Rh square plane. The final part deals with the mechanism of the reductive elimination reaction, the last step of the [Rh]-catalyzed methanol carbonylation cycle, which from complex [RhI3(COCH3)(CO)2]-, regenerates [RhI2(CO)2]-. In contrast to the classically admitted mechanism of reductive elimination of CH3COI followed by subsequent hydrolysis to form AcOH and HI, we demonstrate from experimental DFT calculation that substitution of an iodo ligand by an acetate ion occurs to give rise to the [RhI2(OAc)(COCH3)(CO)2]- species. Thus, reductive elimination regenerates [RhI2(CO)2]- and produces acetic anhydride, which after hydrolysis affords two molecules of acetic acid. Such a mechanism operates under process conditions at low water content with a significant amount of acetate ions." |
Document : |
Thèse de Doctorat |
Etablissement_delivrance : |
Institut National Polytechnique de Toulouse - INPT |
Date_soutenance : |
10/11/2011 |
Ecole_doctorale : |
Sciences de la Matière (Toulouse) |
Domaine : |
Chimie/Chimie de coordination |
En ligne : |
https://theses.hal.science/tel-04547017 |
| ![Synthesis and reactivity of [RhI(CO)2(L)] and [RL][RhI2(CO)2] rhodium complexes where L is a nitrogen containing ligand for the methanol carbonylation reaction vignette](https://bibliotheque.lcc-toulouse.fr/thumbnail.php?type=1&id=7206) |